Spatially resolved quantification of gadolinium(III)-based magnetic resonance agents in tissue by MALDI imaging mass spectrometry after in vivo MRI.

نویسندگان

  • Michaela Aichler
  • Katharina Huber
  • Franz Schilling
  • Fabian Lohöfer
  • Katja Kosanke
  • Reinhard Meier
  • Ernst J Rummeny
  • Axel Walch
  • Moritz Wildgruber
چکیده

Gadolinium(III)-based contrast agents improve the sensitivity and specificity of magnetic resonance imaging (MRI), especially when targeted contrast agents are applied. Because of nonlinear correlation between the contrast agent concentration in tissue and the MRI signal obtained in vivo, quantification of certain biological or pathophysiological processes by MRI remains a challenge. Up to now, no technology has been able to provide a spatially resolved quantification of MRI agents directly within the tissue, which would allow a more precise verification of in vivo imaging results. MALDI imaging mass spectrometry for spatially resolved in situ quantification of gadolinium(III) agents, in correlation to in vivo MRI, were evaluated. Enhanced kinetics of Gadofluorine M were determined dynamically over time in a mouse model of myocardial infarction. MALDI imaging was able to corroborate the in vivo imaging MRI signals and enabled in situ quantification of the gadolinium probe with high spatial resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gadolinium-Diethylenetriaminepenta-Acetic acid Conjugated with Monoclonal Antibody C595 as New Magnetic Resonance Imaging Contrast Agents for Breast Cancer (MCF-7) Detection

Background: The monoclonal antibody, C595, against breast cancer cell line was conjugated with cyclic anhydride gadolinium-diethylenetriaminepenta-acetic acid (Gd-cDTPAa) to produce Gd-DTPA-C595 and used as specific breast cancer cell line (MCF-7) contrast agents in magnetic resonance imaging (MRI).  Methods: After incubation of breast cancer cell line (MCF-7), with different contrast agents (G...

متن کامل

Glucosamine Conjugated Gadolinium (III) Oxide Nanoparticles as a Novel Targeted Contrast Agent for Cancer Diagnosis in MRI

Background: Glucose transporter (Glut), a cellular transmembrane receptor, has a key role in the metabolism of cell glucose and is also associated with various human carcinomas.Objective: In this study, we evaluated a magnetic resonance (MR) imaging contrast agent for tumor detection based on paramagnetic gadolinium oxide (Gd2O3) coated polycyclodextrin (PCD) and mod...

متن کامل

Application of Magnetic Resonance Imaging (MRI) as a safe & Application of Magnetic Resonance Imaging (MRI) as a safe & non-destructive method for monitoring of fruit & vegetable in postharvest period

To investigate and control quality, one must be able to measure quality-related attributes. Quality of produce encompasses sensory attributes, nutritive values, chemical constituents, mechanical properties, functional properties and defects. MRI has great potential for evaluating the quality of fruits and vegetables. The equipment now available is not feasible for routine quality testing. The ...

متن کامل

Magnetic Resonance Imaging Property of Doxorubicin-Loaded Gadolinium/13X Zeolite/Folic Acid Nanocomposite

Background: Magnetic resonance imaging (MRI) using nanostructures has been a proper method for tumor targeting purposes. Different MRI nanomaterials, targeting agents and anticancer drugs have been used for targeting of tumors. Objectives: This study aims to consider the MRI property of doxorubicin (DOX)-loaded gadolinium/13X zeolite/folic acid (Gd3+/13X/FA) nanocomposite.<br /...

متن کامل

Analytical determination of the chemical exchange saturation transfer (CEST) contrast in molecular magnetic resonance imaging

Magnetic resonance based on molecular imaging allows tracing contrast agents thereby facilitating early diagnosis of diseases in a non-invasive fashion that enhances the soft tissue with high spatial resolution. Recently, the exchange of protons between the contrast agent and water, known as the chemical exchange saturation transfer (CEST) effect, has been measured by applying a suitable pulse ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 54 14  شماره 

صفحات  -

تاریخ انتشار 2015